Active Releases
When the developer is satisfied that a new version of a module incorporates all required changes, it can be released for public use. This is done by changing the status of the new version from “developer” to “active” and notifying researchers and the lead programmer that the module has been released. Before releasing it, consider the following:
Has the new version been adequately tested?
When running the new version on the latest baseline, can all changes in any summary table and any result variable (or a standard subset of variables) be accounted for?
Do things that should change actually change? Do they change in the expected way (both at the aggregate level and micro level)?
Can the new version reproduce existing results (particularly the most recent baseline)? [Note: To test this, you may have to re-run the baseline setup with the version of code you started with so that you can compare simulated run results using that version with run results using the updated version you are developing.]
Should any versions of the module be made inactive?
Backward compatibility must always be preserved. Thus, you should avoid making any changes to the database that causes earlier versions to fail or that changes results of earlier versions. If in doubt about the impact of a database change, always check with the Lead Programmer. Since backward compatibility is preserved, it is usually not necessary to make earlier versions inactive simply because a new version is available.
However, if the new version corrects an error, earlier versions with the error might be made inactive, though analysts may request access in the future if they want to reproduce earlier results.
If the new version is capable of reproducing previous versions’ results, the earlier versions may be made inactive. However, it is typically a good idea to keep available the versions that were used for the last 2 or 3 years of baseline simulations, as well as any recent versions used for technical assistance work.
Version availability is most easily changed using SQL commands such as the following:

Update ctd.sim_dll set status=1 where module = ‘TANF_31_0’;

Use great care in using such SQL commands (for instance by specifying a single module), as such commands have the potential to inadvertently alter many records at once.

Status codes:

0=unavailable to all users

1=active; available to all users

2=development version available only to programmers
Is the description of the new version adequate?
Does the description explain what a user needs to do when upgrading an existing setup to use the new version of the module? If the new version adds program rules, does the description indicate what values they were given for existing setups?
If the new version will affect their results, does the description explain how they will be affected? Does it describe how to use the new version to reproduce old results?

Are all these points addressed in a manner that the user will understand? For the final release, the description should be geared towards the user, not the developer. Consider using html tags to make the description easier to read.

Has all related documentation been updated?
If any new rules or results were added, have they been properly documented in the dictionary?
Are any updates required to existing entries to account for the new rules and/or results?
Has the main documentation of the module been updated to reflect the change?
Should an entry be made in the “What’s New” log?

Should any auxiliary programs be modified to handle this module’s change?
For example, the TANF module uses a semi-automated process for converting WRD variables into TRIM rules. Should this process be modified?
Should the public server be updated?
Should the Marginal Tax Rate Calculator be updated?
Should any other modules be modified to accommodate changes to this module?
